Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtre
Ajouter des filtres

Base de données
Type de document
Gamme d'année
1.
biorxiv; 2023.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2023.12.01.569046

Résumé

The main protease (Mpro) of the SARS-CoV-2 coronavirus employs a cysteine-histidine dyad in its active site to catalyse hydrolysis of the viral polyproteins. It is well established that binding of the substrate P1-Gln in the S1 subsite of Mpro active site is crucial for catalysis and this interaction has been employed to inform inhibitor design; however, how Mpro dynamically recognises and responds to substrate binding remains difficult to probe by experimental methods. We thus employed the dynamical nonequilibrium molecular dynamics (D-NEMD) approach to probe the response of Mpro to systematic substrate variations. The results emphasise the importance of P1-Gln for initiating a productive enzymatic reaction. Specifically, substituting P1-Gln with alanine disrupts the conformations of the Cys145 and His41 dyad, causing Cys145 to transition from the productive gauche conformation to the non-productive trans conformation. Importantly, our findings indicate that Mpro exhibits dynamic responses to substrate binding and likely to substrate-mimicking inhibitors within each of the S4-S2' subsites. The results inform on the substrate selectivity requirements and shed light on the observed variations in hydrolytic efficiencies of Mpro towards different substrates. Some interactions between substrate residues and enzyme subsites involve more induced fit than others, implying that differences in functional group flexibility may optimise the binding of a substrate or inhibitor in a particular subsite.

2.
biorxiv; 2023.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2023.07.11.548309

Résumé

The SARS-CoV-2 papain-like protease (PLpro) is an antiviral drug target that catalyzes the hydrolysis of the viral polyproteins pp1a/1ab, releasing the non-structural proteins (nsps) 1-3 that are essential for the coronavirus lifecycle. The LXGG{downarrow}X motif found in pp1a/1ab is crucial for recognition and cleavage by PLpro. We describe molecular dynamics, docking, and quantum mechanics/molecular mechanics (QM/MM) calculations to investigate how oligopeptide substrates derived from the viral polyprotein bind to PLpro. The results reveal how the substrate sequence affects the efficiency of PLpro-catalyzed hydrolysis. In particular, a proline at the P2'; position promotes catalysis, as validated by residue substitutions and mass spectrometry-based analyses. Analysis of PLpro catalyzed hydrolysis of LXGG motif-containing oligopeptides derived from human proteins suggests that factors beyond the LXGG motif and the presence of a proline residue at P2' contribute to catalytic efficiency, possibly reflecting the promiscuity of PLpro. The results will help in identifying PLpro substrates and guiding inhibitor design.

3.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.12.10.519730

Résumé

The SARS-CoV-2 main protease (Mpro) plays an essential role in the coronavirus lifecycle by catalysing hydrolysis of the viral polyproteins at specific sites. Mpro is the target of drugs, such as nirmatrelvir, though resistant mutants have emerged that threaten drug efficacy. Despite its importance, questions remain on the mechanism of how Mpro binds its substrates. Here, we apply dynamical nonequilibrium molecular dynamics (D-NEMD) simulations to evaluate structural and dynamical responses of Mpro to the presence and absence of a substrate. The results highlight communication between the Mpro dimer subunits and identify networks, including some far from the active site, that link the active site with a known allosteric inhibition site, or which are associated with nirmatrelvir resistance. They imply that some mutations enable resistance by altering the allosteric behaviour of Mpro. More generally, the results show the utility of the D-NEMD technique for identifying functionally relevant allosteric sites and networks including those relevant to resistance.

4.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.06.18.446355

Résumé

The main protease (Mpro) of SARS-CoV-2 is central to its viral lifecycle and is a promising drug target, but little is known concerning structural aspects of how it binds to its 11 natural cleavage sites. We used biophysical and crystallographic data and an array of classical molecular mechanics and quantum mechanical techniques, including automated docking, molecular dynamics (MD) simulations, linear-scaling DFT, QM/MM, and interactive MD in virtual reality, to investigate the molecular features underlying recognition of the natural Mpro substrates. Analyses of the subsite interactions of modelled 11-residue cleavage site peptides, ligands from high-throughput crystallography, and designed covalently binding inhibitors were performed. Modelling studies reveal remarkable conservation of hydrogen bonding patterns of the natural Mpro substrates, particularly on the N-terminal side of the scissile bond. They highlight the critical role of interactions beyond the immediate active site in recognition and catalysis, in particular at the P2/S2 sites. The binding modes of the natural substrates, together with extensive interaction analyses of inhibitor and fragment binding to Mpro, reveal new opportunities for inhibition. Building on our initial Mpro-substrate models, computational mutagenesis scanning was employed to design peptides with improved affinity and which inhibit Mpro competitively. The combined results provide new insight useful for the development of Mpro inhibitors.

SÉLECTION CITATIONS
Détails de la recherche